piątek, 1 listopada 2013

Fuzja termojądrowa – energia gwiazd

I ponownie mam zaszczy przedstawić kolejny artykuł, który napisał dla Nas Aleksander Lis! Jest to kolejny artykuł napisany dla Nas przez czytelników; wcześniejsze artykuły znajdziecie pod linkami: Bańki mydlane, Kaczor Donald i efekt kapilarnySkazani na wolne rodniki Po co lunatykom Księżyc? Za co mały ślimaczek mógłby być wdzięczny swojej matce?,  Mam nadzieję, że tak jak autor obiecuje, doczekamy się kolejnych prac spod pióra Aleksandra! Zapraszam do czytania i komentowania, oraz polubienia strony na Facebook!


Fuzja termojądrowa – energia gwiazd

Fuzja termojądrowa jest procesem, w którym generowana jest niewiarygodnie wielka ilość energii cieplnej. Polega na reakcjach atomowych, w wyniku których z lżejszych  pierwiastków powstają cięższe (odwrotnie niż w reakcji rozszczepienia jądrowego). Miejscem, w którym najczęściej mamy z nią do czynienia są gwiazdy, w tym nasze Słońce. Aby pokazać jak dużo energii emituje Słońce, wystarczy powiedzieć, iż w ciągu jednej sekundy wytwarza koło 1023 kWh, czyli ok. milion razy więcej niż cała ludzkość zużywa w ciągu roku.

Fuzja w gwieździe

W pojedynczej reakcji dochodzi do syntezy czterech jąder protu (H1)[1], podczas której zostaje uwolniona energia równa 27,6 MeV. Dzieje się to w trzech etapach:
Pierwszy, to synteza 2 jąder protu, która następuje statystycznie co mniej więcej 5 mld lat. Jednak biorąc pod uwagę ich ilość w Słońcu, poniższe reakcje zachodzą praktycznie bez przerwy.
H1+ H1 à D2+e+ve+γ                        Q=1,44MeV

Gdzie:
e – elektron
ve – neutrino elektronowe
γ – kwant gamma
Q – energia powstała w wyniku reakcji

Drugim etapem jest połączenie powstałego w poprzednim etapie jądra deuteru, z kolejnym jądrem wodoru, co następuje po 1,4 s. Pozwala to na uzyskanie helu 3 (He3):
D2+ H1→ He3+ γ                   Q=5,49MeV

Trzecim i ostatnim etapem, który następuje po 240 000 lat, jest wytworzenie helu 4 (He4):
He3+ He3→He4+2 H1                Q=12,86 MeV

Uzyskana w wyniku tych reakcji energia uwalniana jest w postaci fotonów, które odbijają się od elektronów we wszystkich kierunkach. Pojedynczy foton potrzebuje na wydostanie się ze Słońca (czyli pokonanie w linii prostej jego promienia – około 700 000 km) średnio około 20 000 lat. Dla porównania – przebycie 150 mln km dzielących Słońce od Ziemi zajmuje mu jedynie 8 minut.

Fuzja na Ziemi

Obserwując gwiazdy, naukowcy zaczęli zastanawiać się nad wykorzystaniem fuzji termojądrowej do produkcji energii na naszej planecie. Na pierwszy rzut oka, mogłoby się to wydawać niemożliwe. Warunki panujące na Słońcu są przecież bardzo dalekie od tych, do których jesteśmy przyzwyczajeni w naszym codziennym życiu. W jądrze Słońca panuje przecież temperatura rzędu 15 mln °C, oraz ciśnienie około 400 mld atmosfer (40 TPa).

Dotychczas nie opracowano techniki umożliwiającej odtworzenie warunków panujących na Słońcu, jednak istnieje rozwiązanie tego problemu. Warunki do przeprowadzenia reakcji można uzyskać przez osiągnięcie odpowiednio wyższej temperatury w niższym ciśnieniu. Jest to odpowiednio 150-200 mln o C przy ciśnieniu rzędu 1-2 atmosfer.
W tych warunkach najlepszą mieszaniną jest deuter i tryt. Ten pierwszy jest ogólnodostępny w wodzie morskiej. Średnio, w każdym 1 m3 znajduje się koło 35 g tego izotopu. Natomiast tryt naturalnie występuje na ziemi w bardzo małych ilościach. Jednak można go uzyskać np. z litu, poddanego procesowi bombardowania neutronami. Lit na ziemi występuje powszechnie (np. w skałach), i nie ma problemu z jego pozyskaniem. Mieszanina ta w temperaturze przekraczającej 10 mln °C zamienia się w czwarty stan skupienia – plazmę, w której znajdują się swobodne, naładowane cząstki. Dalsze podniesienie temperatury plazmy do poziomu 150 – 200 mln °C pozwala na przeprowadzenie następującej reakcji:

D2 + T3 →He4 + n                  Q = 17,6MeV

n – neutron

Gaz podgrzewany jest trzyetapowo:
1. Indukcja prądu zmiennego o dużym natężeniu (kilkanaście, a w planach nawet ponad 20 MA (mega amperów)). Na tym etapie wykorzystuje się właściwość każdego opornika, który nagrzewa się podczas przepływu przez niego prądu. W tym wypadku opornikiem jest plazma, która przy tak wielkim natężeniu prądu uzyskuje temperaturę do 10 mln °C. Jest to górna granica podgrzania, którą można osiągnąć w tym procesie, ponieważ wraz ze wzrostem temperatury maleje oporność plazmy.

2. Wstrzykiwanie wiązek mikrofal i wykorzystanie zjawiska absorpcji rezonansowej.

3. Neutral Beam Injection. Jest to bombardowanie plazmy szybkimi, neutralnymi cząsteczkami, które zderzając się z jądrami deuteru i trytu, przekazują im swoją energię kinetyczną.

Wszystkie te trzy metody połączone dają oczekiwaną temperaturę plazmy, przekraczającą 150 mln °C.

Możliwość osiągnięcia tak wysokich temperatur rodzi kolejny problem – żaden znany materiał nie jest odporny na taką ilość ciepła. Rozwiązaniem tej kwestii jest utrzymywanie plazmy w pułapce magnetycznej, uniemożliwiając zetknięcie się gorącej materii ze ścianami reaktora. Jest to możliwe dzięki właściwościom plazmy – mimo, że jej sumaryczny ładunek elektryczny wynosi zero, jest złożona z luźno poruszających się jonów i elektronów, na które wpływa pole magnetyczne. Dzięki temu, za pomocą odpowiednich cewek plazma może być utrzymana z dala od ścian reaktora.
Cząstki, które nie mają zerowego ładunku elektrycznego, dzięki sile Lorentza[2] poruszają się ruchem obrotowym wokół pola magnetycznego. Dlatego reaktory przeznaczone do reakcji fuzji jądrowej tworzone są w kształcie przypominającego pierścień tokamaku (Toroidalnaja Kamiera s Magnitnymi Katuszkami – toroidalna komora z cewkami magnetycznymi).

Kolejnym wyzwaniem jest zamiana uzyskanej energii na energię elektryczną.
Neutron powstały w reakcji (dla przypomnienia D2 + T3 →He4 + n) unosi ze sobą ok. 80% wyzwolonej energii. Jako że nie niesie ze sobą ładunku (jest elektrycznie obojętny), nie wpływa nań pole magnetyczne. Cząstka poruszając się z ogromną prędkością uderza w ściany reaktora, powodując wydzielanie ciepła. Jest ono używane do podgrzewania wody znajdującej się w rurach otaczających reaktor. Ta, podobnie jak w innych blokach cieplnych (węglowe, jądrowe) zamieniana jest w parę wodną, która napędza turbinę sprzężoną z generatorem prądu.

Zaletami fuzji termojądrowej są:
- praktycznie niewyczerpalne zasoby paliwa
- brak emisji gazów cieplarnianych
- brak odpadów promieniotwórczych
- możliwość natychmiastowego wyłączenia reaktora.
Ostatnia zaleta jest o tyle ważna, że tradycyjne reaktory jądrowe, nawet po odcięciu zasilania, wytwarzają ciepło. Jak pokazała awaria w Fukushimie, w wyjątkowych warunkach może to doprowadzić do przegrzania rdzenia i awarii (więcej: http://adamrajewski.natemat.pl/53729,dwa-lata-po-fukushimie).

Ta obiecująca technologia nie została dotychczas dopracowana. Obecnie moc potrzebna do podtrzymania reakcji (podgrzewanie plazmy, utrzymanie pola magnetycznego, etc.), jest większa od tego, co możemy z niej uzyskać. Najlepszym wynikiem jest 16 MW z reaktora JET, przy 25MW potrzebnych do podgrzania plazmy.
Naukowcy z całego świata nie poddają się. Jest o co walczyć – zgodnie z symulacjami, reaktor termojądrowy przyszłości będzie mógł produkować ponad 80-krotnie więcej energii niż zużyje do jej wytworzenia.

O dokładniejszej budowie reaktorów termojądrowych, ich historii oraz o realizowanych projektach i planach napiszę w następnych artykułach.

 
Rys. 1- wnętrze tokamaka JET i skala w porównaniu do człowieka.

Aleksander Lis
  


 [1] Prot - izotop wodoru złożony z pojedynczego protonu i krążącego wokół niego elektronu. Stanowi ponad 99,98% tego pierwiastka występującego w przyrodzie. Pozostałymi izotopami wodoru są deuter (D2) i tryt (T3) zawierające w jądrze odpowiednio 1 i 2 neutrony


[2] Siła Lorentzasiła działająca na cząstkę obdarzoną ładunkiem elektrycznym poruszającą się w polu elektromagnetycznym, określona wzorem F=q(E+v x B)

Źródło ilustracji:

Bibliografia:
1) Andrzej Gałkowski „Fuzja jądrowa –Energia Przyszłości”
2) M. Lisak, J. Zaleśny, A. Gałkowski, S. Marczyński, P. Berczyński „Fuzja – kawałek Słońca na Ziemi”
3) Chris Warrick “Fusion-ace in the energy pack?”
4) Chris Warrick “Fusion in the Universe: the power of the Sun”
5) Urszula Woźnicka “Synteza termojądrowa – źródło energii dla elektrowni przyszłości”





4 komentarze:

  1. Ciekawi mnie na jakiej podstawie obliczany jest czas wydostania się fotonu z wnętrza gwiazdy. To już kolejny artykuł jaki czytam na ten temat i w każdym jest przytaczana inna wartość. Co książka/blog to inny wartość. Jak dotychczas najdłuższy czas z jakim się spotkałem to 10mln lat dla naszego słońca (ostatnio 1mln) a dziś u Ciebie czytam "jedyne" 20 tysięcy.

    OdpowiedzUsuń
    Odpowiedzi
    1. hmm
      zdecydowanie postaram znaleźć się więcej opracowań i odpowiedzieć na Twoje pytanie

      Usuń
  2. Bardzo ciekawie napisane. Jestem pod wielkim wrażaniem.

    OdpowiedzUsuń