sobota, 30 maja 2015

Paradoks wody

Woda jest substancją niezwykłą. Chyba każdy o tym wie. Nie wchodząc w chemiczne/ fizyczne dyskusje, to właśnie głównie dzięki niej, życie jest możliwe i na niej się opiera. To już wystarczający fakt, dla którego możemy mówić o jej niezwykłości. Dziś nie będziemy zajmowali się jednak jej niezwykłością, ale skupimy się na jednym ciekawym fakcie. Pojęcie go, a raczej zrozumienie zajęło mi sporo czasu, stąd chciałbym go przybliżyć, bo być może są tutaj inne osoby, które mają podobny problem jak ja miałem.

Woda dysocjuje, a właściwie autodysocjuje. Co to oznacza? Dysocjacja jest procesem rozpadu cząsteczek określonego związku chemicznego na jony, pod wpływem jakiegoś czynnika np. rozpuszczalnika, ale może to być też wysoka temperatura. Przykładowo- chlorek sodu, czyli NaCl, po umieszczeniu w wodzie dysocjuje na kationy sodowe, oraz aniony chlorkowe- my obserwujemy to jako rozpuszczanie chlorku sodu. Dla sprostowania- cukier rozpuszcza się w wodzie, ale nie dysocjuje- rozpadają się jego kryształy, ale sama cząsteczka sacharozy nie rozpada się na drobniejsze (jest to podstawowy błąd, który wiele osób powtarza, a jakoś nauczycielom nie pali się go prostować).

Woda ma zdolność do autodysocjacji- oznacza to, że też może rozpadać się na jony, pod wpływem innych cząsteczek wody. Podobne zdolności ma siarkowodór, amoniak i kilka innych. W reakcji autodysocjacji (bo jest to reakcja chemiczna, a nie proces fizyczny!), dwie cząsteczki wody zderzają się, dzięki czemu jedna cząsteczka oddaje proton i staje się anionem hydroksylowym, a druga cząsteczka kradnie proton, tworząc kation hydroniowy.

Reakcja autodysocjacji ma przeogromne znaczenie- na jej podstawie opiera się cała skala pH. Każda reakcja chemiczna, pozostaje w pewnej równowadze. Określona ilość cząsteczek w każdej chwili rozpada się, a w tej samej chwili tyle samo cząsteczek łączy się. Przykładowo Jeśli na 100 cząsteczek wody, 20 ulegnie autodysocjacji (powstanie 10 jonów hydroniowych i 10 anionów hydroksylowych), to w tym roztworze, już obecne kationy i aniony (po 10 każdego rodzaju) ulegnie przekształceniu w obojętne cząsteczki wody. Równowaga oznacza nie to, że nie występują żadne reakcje- one występują, ale sumarycznie ilość dysocjujących cząsteczek odpowiada ilości cząsteczek które 'poszły' w drugą stronę. W każdej sekundzie w szklance czystej wody zachodzi bardzo wiele reakcji autodysocjacji i tyle samo reakcji przeciwnych, które ze zderzenia jonów dają cząsteczki obojętne.

Jest to istotny fakt, ponieważ na nim opiera się skala pH. Na podstawie reakcji autodysocjacji wody, można zapisać wyrażenie na stałą dysocjacji.  Stała dysocjacji w warunkach standardowych, dla idealnie czystej wody wynosi 3,23·10-18. Chemik wie co to oznacza, a dla nas wystarczy wiedzieć, że taka mała wartość tej stałej, mówi o tym, że woda niechętnie dysocjuje- cząsteczka wody woli pozostać jako zwykła woda, niż zderzyć się z inną tworząc jony. Ale mimo tego, że stała jest tak mała i woda nie jest chętna do autodysocjacji, oto jednak na zachodzi. 

Na podstawie odpowiednich obliczeń, wiemy, że w idealnie czystej wodzie (w 1l), znajduje się po 10-7 mola kationów hydroniowych i tyle samo anionów hydroksylowych. Dzięki temu, woda jako całość jest elektrycznie obojętna, bo tyle samo każdego z jonów daje sumarycznie ładunek obojętny. Mimo tego, że woda jako całość jest obojętna, przeglądając ją molekuła, po molekule, znaleźlibyśmy w litrze wody taką samą ilość kationów jak i anionów.

Wymyślono kolejne pojęcie- iloczyn jonowy wody. Nie wnikajmy co to takiego jest- ale zaznaczam, że nie wymyślono go z nudów! Po prostu przyjmijmy, że to określona wartość, która jest iloczynem (wynikiem mnożenia) stężenia kationów hydroniowych i anionów hydroksylowych w czystej wodzie (10-7 razy 10-7) i wynosi on 10-14. Jest to wielkość mała i nie jest wygodna w użyciu. Wymyślono (z określonych powodów), że będziemy oznaczali iloczyn jonowy wody, jako ujemny logarytm dziesiętny z naszej wartości, czyli –log1010-14. Dzięki temu, 10-14, przybrało bardziej ludzką formę po prostu 14. Wartość 14 jest określona dla danej temperatury! I to będzie bardzo ważne stwierdzenie dla naszych rozważań.

Co nam to dało? Po co się tak trudzić, żeby wyznaczyć liczbę 14?

Na tej podstawie stworzono skalę pH. Jest to skala mówiąca o kwasowości danego roztworu. Można mówić też o skali zasadowości roztworu- wtedy mamy do czynienia z pOH. Są to skale ściśle ze sobą korelujące. Skalę pH oznacza się jako ujemny logarytm ze stężenia kationów hydroniowych w wodzie, a skalę pOH jako ujemny logarytm ze stężenia anionów hydroksylowych w wodzie. Dzięki temu, można wyznaczyć jaka wartość odpowiada chemicznie czystej wodzie. Brzmi strasznie, ale w rzeczywistości są to proste rzeczy, a jeśli kilka razy użyje się tych wielkości, albo przerobi kilka zadań, wszystko staje się dziecinnie proste i ciekawe!

W czystej wodzie, jak wcześniej mówiliśmy, jest 10-7 mola kationów hydroniowych (na 1dm3) i tyle samo anionów hydroksylowych. Policzmy, co na to skale pH i pOH:

Dzięki temu widzimy, że pH + pOH= 14. Czyli znowu pojawia się nam nasza 14! Dzięki temu wiemy, że gdy pH-metr pokaże nam wartość 7, mamy do czynienia z roztworem o obojętnym pH. Gdy pH-metr pokaże nam wartość mniejszą od 7, mamy do czynienia z roztworem kwaśnym (ma on więcej kationów hydroniowych), a gdy pH jest większe od 7 roztwór jest zasadowy (ma więcej anionów hydroksylowych). Stąd skala pH rozciąga się od 0, aż do 14.

I teraz bardzo ważna rzecz- nasza wartość 14 zależy od temperatury! Mało się ten fakt akcentuje, albo po prostu się o nim wspomni raz i tyle. A właśnie od tego zależy „paradoks”, że w wyższej temperaturze woda jest kwaśniejsza. I to jest właściwy temat tego artykułu.

Powszechnie wiadomo, że w wyższej temperaturze woda jest bardziej kwaśna. Tu pojawił się mój pierwszy problem- w jaki sposób woda może być bardziej kwaśna od samej siebie? Podczas autodysocjacji z 2 cząsteczek wody powstają jeden kation hydroniowy i jeden anion hydroksylowy. Więc ładunek dalej taki sam- nie ma ani więcej jednych kationów, ani więcej anionów. Więc w jaki przedziwny sposób woda nagle miałaby produkować więcej kationów hydroniowych? Nie umiałem tego zrozumieć, stąd przyjąłem za fakt, że wyższa temperatura= niższe pH= woda jest kwaśniejsza. Przykładowo powszechnie mówi się, że w 100 stopniach Celsjusza, pH wody spada do około 5,56.

Takie rozważania wprowadzały mnie w zakłopotanie, dopóki bardzo dobitnie nie przeczytałem zdania- iloczyn jonowy wody (nasze 14) zależy od temperatury! W wyższej temperaturze iloczyn jonowy jest odpowiednio mniejszy, i dla temperatury wrzenia, iloczyn jonowy wody wynosi 11,13, czyli po podzieleniu na 2, środek skali (czyli pH obojętne) wypada w okolicach właśnie 5,56. Woda pozostała obojętna, bo zmienił się iloczyn jonowy wody!

Niedoświadczony chemik, wkładając pH-metr do gorącej wody,  faktycznie odczyta na skali, że jest ona kwaśniejsza. Chemik z doświadczeniem, posłuży się kompensacją temperatury (czyli termometrem, który koryguje wyniki) i dzięki temu woda pozostanie obojętna, bo taka jest w rzeczywistości.

Mówienie, że woda jest kwaśniejsza w wyższej temperaturze jest prawdziwe, jeśli mówi się o tym w kontekście warunków standardowych! W rzeczywistości nie jest kwaśniejsza, bo iloczyn jonowy wody, a tym samym środek skali przesuwa się co daje pozorny efekt kwasowości. Z tego punktu widzenia, patrząc na wrzącą wodę, przez pryzmat pomiaru jej pH względem warunków standardowych, urządzenie faktycznie pokaże, że jest ona kwaśna, ale biorąc urządzenie, które uwzględni podwyższoną temperaturę, okaże się (co prawda), że jest ona obojętna. Tak oto w jednej zlewce, ta sama woda w tym samym czasie może być kwaśna i obojętna.

Mam nadzieję, że załapaliście to chociaż w minimalnym stopniu. Mnie to trochę zajęło, mam nadzieję, że wam pójdzie łatwiej!


Brak komentarzy:

Prześlij komentarz