wtorek, 22 maja 2012

Akryloamide- śmierć na talerzu. Acrylamide-death on a plate.


     

     

      Akryloamid, inaczej 2-propenoamid, związek należący do amidów (dokładniej do amidów kwasu akrylowego)- jeden z wielu niepożądanych elementów naszych potraw… ale na szczęście nie wszystkich.
                Akryloamid powstaje w reakcji między asparaginą, a cukrami redukującymi, ale czym to coś jest? Asparagina jest jednym z aminokwasów budującym białka. Jej największe stężenie występuje w nasionach, a także w płynach ustrojowych i międzytkankowych. Została ona wyizolowana w 1806 roku przez francuskich chemików Louis’a Nicolas’a Vauquelin oraz przez Pierre Jean’a Robiquet’a ze szparagów. Cukrami redukującymi natomiast nazywamy wszystkie węglowodany, które reagują pozytywnie z odczynnikami Fehlinga, Tollensa i Benedicta. Należą do nich głównie ketozy (np. maltoza i laktoza oraz niektóre aldozy. Ale co tak naprawdę mają do siebie cukry redukujące i asparagina?
                Serią reakcji chemicznych w której cukry redukujące i asparaginy pod wpływem ciepła łączą się dzięki czemu powstaje niechciany akryloamid nazywamy reakcją Maillarda. Podobnie jak karmelizacja, reakcja Maillarda należy do reakcji typu brązowienia nieenzymatycznego, a samą reakcję opisał w 1912 roku  Louis-Camille Maillard w ramach pracy doktorskiej.
                Akryloamid powstaje w temperaturze od 120^C do 180^C podczas obróbki termicznej produktów zawierających węglowodany i asparaginę (głównie podczas smażenia oraz pieczenia).  Najwięcej akryloamidu powstaje podczas procesów prowadzących do powstania chipsów, kawy rozpuszczalnej, ciast i niektórych gatunków pieczywa. Najmniej natomiast powstaje podczas obróbki termicznej produktów mięsnych- z tego względu, że mięso prawie całkowicie złożone jest z białka i bardzo mało jest w nim jakichkolwiek cukrów.
                Sam w sobie akryloamid jest silną neurotoksyną- toksyną działającą na ośrodkowy układ nerwowy. Może się on przyczyniać do zaburzeń w rozwijającym się organizmie dziecka, prowadzi do nowotworów przewodu pokarmowego, oraz może doprowadzać do zaburzeń w ośrodkowym układzie nerwowym.
                Warto odpuścić sobie raz na jakiś czas paczki chipsów, porcji frytek i śmieciowego jedzenia, na rzecz sałatek, warzyw i owoców, które zostały uprzednio ugotowane w celu chronienia organizmu przed akryloamidem? Może warto również czasami zabronić dziecku, lub nie kupować mu jedzenia z dużą zawartością akryloamidu na rzecz jego dobrego rozwoju?

***

     Acrylamide, otherwise 2-propenoamid, a compound belonging to the amide (more precisely the amides of acrylic acid) - one of the many undesirable elements of our dishes ... but thankfully not in all.

                Acrylamide is formed in the reaction between asparagine and reducing sugars, but what it is? Asparagine is one of the amino acids of protein. Highest concentration occurs in the seeds, as well as in body fluids. It was isolated in 1806 by French chemist Louis Nicolas Vauquelin and Pierre Jean Robiquet'a from the asparagus. Reducing sugars are carbohydrates, which react positively with the Fehling reagent, Tollens and Benedict. These are mainly ketosis (maltose and lactose), and some aldoses. But what really are to each other reducing sugars and asparagine?
             
      Series of chemical reactions in which reducing sugars and asparagine by heat combine into acrylamide called the Maillard reaction. Like caramelisation, the Maillard reaction is a non-enzymatic browning reaction type, and it was described in 1912 by Louis-Camille Maillard.


                Acrylamide is formed at temperatures from 120 to 180 ^ C ^ C during thermal processing of products containing carbohydrates and asparagine (mainly during frying and baking). Most acrylamide is formed during the processes leading to the formation of chips, coffee, pastries and some breads. While the lowest is formed during thermal processing of meat products, for this reason that the meat is almost entirely composed of protein and very little in it of any sugars.

                By itself, acrylamide is a potent neurotoxin, toxin acting on the central nervous system. It could contribute to disorders in the developing child's body, leading to gastrointestinal cancers, and may lead to disturbances in the central nervous system.

                Think! Can it be good to not buy package of potato chips, French fries and portions of junk food in favor of salads, vegetables and fruits that have been previously boiled in order to protect the body from acrylamide? Maybe sometimes we should also prohibit the child, or not to buy him food with high levels of acrylamide in favor of his good development?

wtorek, 15 maja 2012

Iintergalactic cannibalism.

     From the perspective of human life, the great galaxy collisions are not possible, and the universe seems to be static, motionless, quiet and durable. Well ... wrong. Our understanding of the time scale is at least too narrow. For us, 10 years, 100 years, or even 1,000 years is a very large periods of time- for universe its very small snippets of his "cosmic days." For comparison, in my view, our human days, it's like for the world one million years. I think this comparison is valid. Therefore, because of our earthly life is too short and the possibility of observation of space we can't and probably will not be able to observe even a single, total, complete, from beginning to end collisions between galaxies.

     Collisions between galaxies are in the scale of the Universe (all references to time in this article, I'll refer to the "Space Days") are on the agenda. Almost every day somewhere in the space in the universe galaxies collide. But ... whether the word "collision" is the right word? No. These collisions are not full of explosions, fireworks, sounds, and anything that is a special effect, no! These "collisions" of galaxies are silent, very peaceful and long-term process in which the two galaxies are mixed together. This process is very slow, there are no unnecessary special effects. Even in these processes of merging galaxies almost never comes to collisions between stars [sic!] - and that's because the celestial bodies in the form of stars / planets represent only 0.0005% of the entire galaxy.

     But! systems of galaxies, which are "clash" is not simply fly by himself without any harm, and not merge with each other in one moment. This can be more comparable with the ball striking the ground. At the first meeting of the galaxies are mixed together, pass through each other and move away slightly, but after that, galaxies again get close to each other, re-mix, and so until reach the stable state. Therefore, the two spiral galaxies mixing together form an elliptical galaxy.


Here I present you some pictures of interacting galaxies.
Collision of two galaxies (NGC 4038 and NGC 4039) called "insect antennae".
Collisions of two galaxies (NGC 2207 and IC- 2163) in Great Dog Constellation.
Collision of two galaxies (NGC 6872 and NGC 4970) in the
Peacock Constellation.


wtorek, 8 maja 2012

Samotne planety. Lonely planets

 
    Według naukowców z Harvard-Smithsonian Center for Astrophysics (CFA), miliardy gwiazd w naszej galaktyce przechwyciły planety, które wcześniej uciekły z orbit swoich gwiazd macierzystych.

     Rok temu kopalniawiedzy.pl doniosła, o odkryciu naukowców na temat tego, że miliardy planet nie obracają się wokół gwiazd, ale przemierzają przestrzeń inter-galaktyczną samotnie. Teraz dowiadujemy się, że takie planety mogą być przechwytywane przez gwiazdy w pobliżu których przelatują. To wyjaśnia istnienie systemów gdzie orbity planet są bardzo odległe od gwiazd, lub w których planety obracają się w stosunku do innych planet układu pod różnymi kontami, lub w odwrotnym kierunku.

      Na potrzeby najnowszych badań Thijs Kouwenhoven i Perets z Uniwersytetu Pekińskiego przeprowadzili symulację młodej gromady gwiazd, gdzie planety nie są związane z żadną z gwiazd. Symulacje wykazały, że jeśli planety te poruszają się chaotycznie, to 3 do 6 procent z nich zostanie złapany przez gwiazdy. Im masywniejsza gwiazda, tym większe prawdopodobieństwo przechwycenia samotnej planety.

      Naukowcy badali symulację dla młodej gromady gwiazd ponieważ gwiazdy i planety znajdują się w niej bliżej niż w układach o większym stażu. Z czasem, w wyniku interakcji pomiędzy gwiazdami owej gromady grupa rozwija się i znika (wzajemne pożeranie się gwiazd), a z tym związane jest nieuniknione zwiększenie odległości między elementami układu, więc prawdopodobieństwo przechwycenia planety przez gwiazdy szybko spada.

      Planety są prawdopodobnie bardzo często wyrzucane ze swoich orbit. Kiedy układu planetarny zaczyna się formować sytuacja wypychania planet z orbit i ich pozorna ucieczka następuje najczęściej gdy dwie planety silnie na siebie oddziałują. Wtedy jedna z nich zostaje wyrzucona z orbity i rozpoczyna samotną wędrówkę. Kiedy spotyka po drodze gwiazdę, która porusza się z taką samą prędkością i w tym samym kierunku, samotna planeta może do niej dołączyć. Zazwyczaj planety które zostały przechwycone przez gwiazdy krążą dookoła centrum systemu planetarnego setki lub nawet tysiące razy dalej od gwiazdy do której zostały przyłączone niż Ziemia oddalona jest od Słońce.


***

   According to scientists from the Harvard-Smithsonian Center for Astrophysics (CfA), billions of stars in our galaxy intercepted planet that had previously escaped from the orbits of their parent stars.

     A year ago kopalniawiedzy.pl reported that researchers found that the billions of planets may not revolve around the stars, but they are travelling through the space alone. Now we learn that such planets can be captured by the star. It explain the existence of systems where the orbits of planets are very distant from the stars.

     For the purpose of the latest research  Thijs Kouwenhoven and Perets from Peking University conducted a simulation of a young cluster of stars where planets are not related to any of the orbits of the stars. The simulations showed that if planets are the same as the stars, is 3 to 6 percent of them will be captured by the star. The more massive star, the more likely capture the lonely planet.

     Scientists have studied young cluster because stars and planets are closer. With time, the result of interactions between the stars, the cluster expands and disappears. Increase the distance, so the probability of intercepting the planet by the star rapidly decreases.

     The planets are probably very often ejected from their orbits. When formed into a planetary system it may occur when the two planets interact strongly. Then one of them is thrown out of orbit and begin a lonely journey. When you meet along the way a star that is moving at the same speed in the same direction, can be captured by it.

     Usually orbit the planet is seized hundreds or even thousands of times more distant from the star than the Earth orbits the Sun. It can be much inclined to the orbits of the planets 'parent' of a star, and even move in the opposite direction to them.

środa, 2 maja 2012

Jak wygląda dziesiąty wymiar? Imagining the TENTH Dimension.


     Jak dla mnie jest to jeden z najlepszych filmików, jakie możemy znaleźć na youtube.com, który pokazuje nam poważny problem w bardzo prosty, zabawny, ale mimo tego totalnie naukowy sposób, który każdy (przy odrobinie zacięcia, chęci i zrozumienia) może zrozumieć. Nie chciałbym przedłużać, ale polecam obejrzeć ten filmik kilka razy.  Dla normalnych ludzi wizja dziesiątego wymiaru jest nieosiągalna, ale ten film udowadnia nam, że dziesiąty wymiar można zobaczyć na ekranach naszych komputerów.

***

     For me, this is one of the best films showing a serious problem in a simple, funny, but totaly scientific way that everyone can understand. I do not want to extend, but I recommend to view this movie several times. For a normal human concept of the tenth dimension is inconceivable, but this film proves us that ten dimensions we can see on the screen of our computer.



Subtitles in the film is in Polish.

Extra- heavy reactor.

  The Crab Nebula is a pulsar wind nebula associated with the 1054 supernova.

     Stand in front of your mirror. Look at you. Almost every atom, every quark, every electron, every neutron, proton etc. was "born" many years ago, in temperature reaching millions of millions degrees. Some of theme was thrown out in very big Supernova's explosion. Others was "born" in the quieter parts of Universe- in smaller stars, or in interstellar space.
But let's make our private atom, at the beginning let's make the hydrogen. It's very "simple"- we just need one proton, and one electron. If we don't have any electron, don't worry, just wait. Placing the lonely proton in the space we need only wait until he attracts to himself an electron, attracted by the force of electrostatic interaction. In fact, creating any atomic nucleus, we don't need to worry about the electrons- they always arrive on time. As you can see the connection electrons with atomic nucleus is not difficult. But, the creation of the nucleus (composed of protons and neutron) is much more difficult.

     Now let's get a little more sophisticated chemistry, let's build a variety of hydrogen-deuterium. This requires us to join the hydrogen nuclei (protons) electrically neutral neutrons. If we get closer proton and neutron to each other nuclear forces will join them, much stronger than other forces acting in nature (the nuclear forces are very, very, very strong, but they works only for very small distance). If we managed to create deuterium, we can now attach to it the last neutron to form tritium, the heaviest variation of hydrogen.

     But, suddenly something fucked up. Our tritium twitched, something very quickly ran out of them, one of the neutrons turn into proton, quickly escaping from the nucleus electron and much faster neutrino. We were now alone, but there is something else! Our tritium was transformed into a helium nucleus. Surprise like that, happens us more than once or twice when we played in the creation of new elements. It wasn't very hard to make tritium- adding neutrons to the nucleus is not very complicated. But, here is another surprise. Lonely neutrons which we want to use to make another nuclei break up very quickly if they're out of the nuclei. So if we want to make another chemical elements, we need to use protons, but! another surprise [sic!]. The addition of a proton, which is positively charged, to the positively charged nucleus is very, very difficult because the same electric charges repel strongly. If we want to break these electric wall we must use very speeding proton, excel at the center of the nucleus and pray for good luck.  In the best case, a speeding proton goes in the middle of the nucleus, nuclear forces will work and we get a new nuclei of a new chemical element.

     Our Universe was formed 13,8 billions years ago in the sparkle of Big Bang. First nuclei of hydrogen, helium and lithium was "borned" few minutes after Big Bang, when temperatures, density of matter was so high, and protons and neutrons was able to connecting. Universe during the Great Inflation was expanded, temperature dropped down, and almost every matter turned into nuclei of helium, rest has become lonely protons and electrons (the temperature was almost to high to let to connecting between protons and electrons together). When the temperature dropped down a little bit down, electron have been started to reach protons, and then the hydrogen began to gather in great clouds, which then began to collapse, forming stars, which as a fuel for the light used a high temperature to connect the hydrogen into helium. That caused the first stars were very large. When the hydrogen in them were exhausted and remained nearly only helium, the star out of the energy sources began to shrink. The star was shrinking and shrinking and shrinking, until the temperature of the crowd rose again. Helium in the midst of star (in more than one hundred million degrees), were burned very quickly. The result was the rise of burning helium nuclei into carbon, oxygen, neon and magnesium. The star continued to fell, and the temperature rise, coal "burned" at six million degrees, and later at several billions of degrees, until the formation of iron in the core of the star.

     Iron nucleus reluctantly joins other nuclei. This process instead of give energy, it absorbs it. The star, who produced the iron in the center, is doomed to death. The star explodes. Star emits into the space created in own middle matter. The exlposion emits neutrino and many neutrons that scattered close to the speed of light speed, collide with the nuclei of other elements, which allows to create elements heavier than iron, such as lead, mercury, uranium, etc. Because these nuclei are joined only neutrons, then must have place a "surprise" that we had when we were playing with tritium- for equilibrium neutron turns into a proton, throwing out of himself and an electron neutrino.

     And so in cosmic explosions of stars formed material which we are built. I wonder where in space were "born" elements which build our hand, foot, brain, or eye ...

wtorek, 1 maja 2012

If you are bored start counting R of black hole!

     Last time I was very bored. And I start counting R of black hole (of course in the easiest way I found). It's very simple. You just need one formula ( R= 2GM/c2) and the part 2GM/c2 you can take as 1,48 * 10-27 because (2 * 1,67 * 10-11/ (3*108) it's approximately exactly 1,48 * 10-27.


Top: simulation of absorption of the star by a supermassive black hole.
Below: an observation of this process in galaxy RXJ 1242-11
     The formula is correct when mass used by you is smaller than R (radius of black hole) which has been counted. But, let's make an a simple example.
We can take mass of our Sun, and let's checked how small should be radius of our Sun, to make it like a black hole. Wikipedia reported that the mass of the Sun is 1.9891 × 1030 kg, so...

R= 1,48 * 10-27 * 1.9891 × 1030 = 2,9438 * 103

     So as we can see our Sun should shrink very much, and have less than 2943,8 meters of radius to start be a black hole. Now our Sun have 0,696 * 106 of radius, so it should shrink  236 times.

     In fact if you will conduct many calculations for different masses, and after these you can count density of these objects and you can see, that density is decreasing if mass and radius of black hole rising. Strange? Not exactly. If anywhere will exist black hole of radius large like one light year, the mass of these object will be something about 6,39 * 1042 kg, but the density of that will be about 0,0018*10 -3 km/m3. This follows from the fact that the radius of the black hole increases linearly with the increase in mass, and consequently its mean density decreases much faster.

Is it Higgs?



  
     During the conference, which took place on 13 December 2011, scientists working at ATLAS and CMS experiments, the Large Hadron Collider (LHC) reported on the state of Higgs boson searches. The analysis of data generated by ATLAS shows that the mass of God Particles - if it exists - is located between116-130 gigaelectronvolts (GeV). CMS data indicate the range 115-127 GeV. This is a very good agreement, but it is too small to conclude that the Higgs boson has been discovered.

     If the Higgs exists, he decay very quickly. Researchers are looking not only boson, but signs of his decay. So far we have tested various weight ranges and different types of decay.

     The existence of a Higgs boson is postulated by the Standard Model, which states that the known particles - quarks and leptons - have mass through interaction with the Higgs field, which exists because of carriers - Higgs bosons.

     Boson in itself nature is a hypothetical elementary particles predicted by the Standard Model. The Higgs fields is a quantum field with a non-zero value that fills all of space, and explains why fundamental particles such as quarks and electrons have mass. The Higgs boson is an excitation of the Higgs field above its ground state.



     The existence of this particle is theoretically justified by the Higgs mechanism consists in the coupling of quantum fields of matter (fermions fields, such as electron field, quarks fields, Higgs fields as the fields W and Z, etc.) with an additional quantum field called the Higgs field, which resulted in breaking through spontaneous of symmetry when no mass particles begin to possess the mass.

     In some theories of early universe decay Higgs field is identified with the Big Bang. In this perspective, there is a great-eternal universe, in which a small section of the Higgs field collapsed to form our observed universe.